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Abstract 
 
This paper presents technical approaches and innovations in digital library design developed during 
the design and implementation of the Chinese Text Project, a widely-used, large scale full-text 
digital library of pre-modern Chinese writing. By leveraging a combination of domain-optimized 
Optical Character Recognition (OCR), a purpose-designed crowdsourcing system, and an 
Application Programming Interface (API), this project simultaneously provides a sustainable 
transcription system, search interface and reading environment, as well as an extensible platform 
for transcribing and working with pre-modern Chinese textual materials. By means of the API, 
intentionally loosely integrated text mining tools are used to extend the platform, while also being 
reusable independently with materials from other sources and in other languages. 
 
Introduction 
 
Traditional full-text digital libraries, including those in the field of pre-modern Chinese, have 
typically followed top-down, centralized, and static models of content creation and curation. In this 
type of model, written materials are scanned, transcribed by manual effort and/or Optical 
Character Recognition (OCR), then corrected manually, reviewed, annotated, and finally imported 
into a system in their final, usable form. This is a natural and well-grounded strategy for design and 
implementation of such systems, with strong roots in traditional academic publishing models, and 
offering greatly reduced technical complexity over alternative approaches. This strategy, however, 
is unable to adequately meet the challenges of increasingly large-scale digitization and the resulting 
rapid growth in potential corpus size as ever larger volumes of historical materials are digitized by 
libraries around the world. 

The Chinese Text Project (https://ctext.org) is a full-text digital library of pre-modern 
Chinese written materials which implements an alternative model for creation and curation of full-
text materials, adapting methodologies from crowdsourcing projects such as Wikipedia and 
Distributed Proofreaders (Newby and Franks 2003) while also integrating them with full-text 
database functionality. In contrast to the traditional linear approach, in which all stages of 
processing including correction and review must be completed before transcribed material is 
ingested into a database system, this approach works by immediately ingesting unreviewed 
materials into a publicly available, managed system, within which these materials can be navigated 
and used, as well as improved through an ongoing collaborative correction and annotation process. 
From a user perspective, this has the consequence that the utility of the system does not rest upon 
prior expert review of materials, but instead derives from provision to individual users of the ability 
to interact directly and effectively with primary source materials and verify accuracy of 
transcription and annotation for themselves. Combined with specialized Optical Character 
Recognition techniques leveraging features common to pre-modern Chinese written works 
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(Sturgeon 2017a), this has enabled the creation of a system providing access to a long tail of 
historical works which would otherwise not be available in transcribed form. The system is highly 
scalable and currently contains over 25 million pages of primary source material and over 5 billion 
characters of transcribed text, while being used by over 30,000 users around the world every day.1 

As the scale of the project has grown considerably since originally envisioned, many 
opportunities for text mining and other digital studies using material contained within the platform 
have emerged. To facilitate these uses, an Application Programming Interface (API) has been 
implemented, which is currently used for text mining purposes in research and teaching at a 
number of universities worldwide, as well as for facilitating data exchange with independently 
developed online tools, such as the MARKUS textual markup platform for historical Chinese texts 
developed at Leiden University (De Weerdt et al. 2016) and the Text Tools textual analysis platform 
(Sturgeon 2019, forthcoming). 

 
Basic functionality and representations of data 
 
Systems such as MediaWiki have been used successfully to enable crowdsourced collaboration of 
the transcription of historical textual works – a notable example being the Wikisource project 
(https://wikisource.org), which allows anonymous and pseudonymous users to contribute to the 
transcription of texts in a large range of languages. While the quality of transcriptions in Wikisource 
varies greatly, open collaborative transcription systems have been shown to be capable of 
producing accurate transcriptions (Neudecker and Tzadok 2010). Transcriptions of texts created as 
part of Wikisource have been widely used in text mining and Natural Language Processing (NLP) 
applications, as have those produced through other crowdsourced transcription platforms such as 
Distributed Proofreaders. 

One key difference between the system described in this paper and many crowdsourcing 
transcription projects is that in the Chinese Text Project, collaborative editing is in general expected 
to be an ongoing, continual process, rather than one which should be completed prior to use of 
fully corrected transcriptions. The extremely large volume of primary source material available – 
the project currently provides access to over 25 million pages of scanned material – means that 
even with a large and committed crowdsourcing community, many more obscure materials cannot 
be expected to be manually corrected for some time. As a result, the use of these materials is not 
expected to be something which can take place only after correction has been completed; instead, 
use may occur at any time starting from the initial creation of a transcription by OCR. Full-text 
search of scanned image sequences, full-text indexing of the entire body of material, extraction of 
full-text data in a readable form, and API access to content are all expected to take place at any 
point in the process of correction, from first ingestion of unreviewed data through to completed 
correction. This dynamic model contrasts with both the traditional static model of content curation 
for full-text digital libraries, as well as with models such as those of Distributed Proofreaders and 
other systems implicitly relying upon a two-step process of complete correction in a system 
designed solely for transcription, followed by use of fully corrected materials in separate systems 
not implementing crowdsourced correction (Fig. 1).  

This design requirement has important consequences for the data structures used to 
represent textual materials during the crowdsourcing process. For example, one serious difficulty 
faced in using data contained in MediaWiki-type systems such as Wikisource for text mining 
purposes is the high degree of freedom of structure allowed by the page-based or “article” model. 



Software like MediaWiki allows the editing of individual pages or “articles” (directly analogous to 
encyclopedia articles in Wikipedia, which is built using the same software platform), which for 
practical reasons should not be arbitrarily long. In Wikisource, a single long text is frequently 
represented by using a separate page for each chapter of the text, together with another page 
containing links to each chapter in sequence. However, neither the MediaWiki platform nor the 
Wikisource implementation enforce this particular choice of structure, and many other structures 
are both possible and observed in practice – for example, multiple levels of contents pages, as well 
as composite texts which are themselves composed of other texts. More seriously, as the platform 
does not enforce rules on which pages may link to which others, the link structure that would need 
to be navigated to serialize a complete text, starting from its contents page, is modeled as an 
arbitrary directed graph – allowing cases such as cycles as well as disconnected or “orphan” pages. 
Other complicating factors include the presence of multiple links intended for human readers (such 
as navigation bars), which would need to be specifically excluded by an indexing system attempting 
to construct the entire text as a single object by identifying and assembling all of its various pieces 
in the correct order. 

Page-based models of representation in which pages correspond to physical pages in a 
source manuscript easily sidestep this issue, because pages occur in sequence and so it should be 
possible to assemble their contents in the correct order with little difficulty; this type of approach is 
common in dedicated transcription systems in which a scanned source existing in the system is a 
prerequisite to any transcription being created. 2  In this approach, division into logical 
organizational units such as chapters is no longer a core feature of the representation; though in 
principle this could be added using markup conventions, the currently used markup in projects such 
as Distributed Proofreaders does not provide markup to indicate this, instead asking proofreaders 
to use markup describing the formatting of a chapter heading.3 

The representation chosen for the Chinese Text Project attempts to combine aspects of 
both approaches in such a way as to record information about physical page locations as well as 
logical hierarchies in the text such as chapter divisions, while also constraining the maximum size of 
internally represented textual units and minimizing the required complexity of processing for 
display of textual content, indexing, and assembling of complete texts. The representation is based 
on two layers: firstly, a complete text is represented as a single sequence of one or more serialized 
textual items of sizes limited to those which can be practically edited in a web browser window. 
These items are internally referred to as “chapters” (though they need not always correspond to 
chapters in the text), and correspond directly to the top-level divisions presented to a user when 
navigating the text. Secondly, each “chapter” consists of a serialized fragment containing the full-
text content of that item, together with additional information that 1) links every line of text to a 
position on the particular page image from which the transcription derives, and 2) encodes logical 
subdivisions within the “chapter”, including paragraph divisions. Fragments contain XML markup 
together with a small number of additional markup conventions, most notably the convention that 
a blank line is interpreted as a paragraph division. This convention was chosen because it has the 
effect that a text not containing any markup (thus representing a transcription which has no links 
to a scanned primary source) is both a valid serialization and also has an easily readable internal 
representation. This representation allows the system to perform versioning at the level of the 
“chapter”, which is of a controlled length; it ensures that when displaying a text one chapter at a 
time, only one underlying unit of serialized data needs to be processed; and it provides a simple 
way of constructing the complete text, by assembling the list of units in the specified order. 



The key function of the chosen representation is to facilitate and connect two distinct 
methods of interacting with the transcribed material: firstly, as a single document consisting of the 
transcribed contents of each page concatenated in sequence to give readable plain-text with logical 
structure (divisions into chapters, sections, and paragraphs); secondly, as a sequence of page-wise 
transcriptions, in which a direct visual comparison can be made between the transcription and the 
image from which it is derived (Fig. 2). In both cases, an important contribution of the transcription 
is that it enables full-text search; the primary utility of the page-wise view is that it enables efficient 
comparison of transcribed material with the facsimile of the primary source itself (Fig. 3). As these 
two views are linked to one another and created from the same underlying data, this makes it 
feasible to read and navigate a text according to its logical structure, and at any stage of the 
process jump to the exact corresponding location in the sequence of page images to confirm 
accuracy of any part of the transcription. 

 
 

 
Figure 1. Static and dynamic models of full-text database content curation. Dotted regions 

indicate parts of the process occurring prior to ingestion into the final platform, during which results 
are inaccessible to users. 
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Figure 2. Image-and-transcription view of the first page of a chapter of text (left), and the 

corresponding logical transcription view (right).4 
 
 

           
Figure 3. Full-text search results can be displayed in context in a logical transcription view (left), as 
well as aligned directly together with the source image in an image and transcription view (right). 
 
Creating transcriptions 
 
The most fundamental types of material contained in the Chinese Text Project are digital facsimiles 
of pre-modern published works, and transcriptions of the textual content of these works. Although 
individual users can also upload both of these types of data individually, image data is more 
typically ingested in bulk through collaboration with university libraries and scanning centers, 
currently including the libraries of Harvard Yenching, Princeton University, and the Chinese 
University of Hong Kong, which have created high quality digital images of works in their collections. 
After ingestion, the next step in making these materials more useful to users is creation of 
approximate transcriptions from page images using OCR. Producing accurate OCR results for 



historical materials is challenging due to a number of issues, including variation in handwriting and 
printing styles, varying degrees of contrast between text and paper, bleed-through from reverse 
sheets, complex and unusual layouts, and physical, water or insect damage to the materials 
themselves prior to digitization. In addition to these challenges, which are common to OCR of 
historical documents generally, OCR for premodern Chinese works faces additional difficulties in 
extracting training data due to the large number of distinct character types in the Chinese language. 
Most OCR techniques apply machine learning to infer from an image of a character which character 
type it is that the image represents, and these techniques require comprehensive training data in 
the form of clear and correctly labeled images in the same writing style for every possible 
character.5 This is challenging for Chinese due to the large number of character types needed for 
useful OCR (on the order of 5000); unlike historical OCR of writing systems with much smaller 
character sets, it is not feasible to simply create this data manually. Instead, training data is 
extracted through an automated procedure (Sturgeon 2017a) which leverages knowledge about 
existing transcriptions of other texts to assemble clean, labeled character images extracted from 
historical works for every character to be recognized (Fig. 4). Together with image processing and 
language modeling tailored to pre-modern Chinese, this significantly reduces the error rate in 
comparison with off-the-shelf OCR software (Sturgeon 2018c). 

 

 
Figure 4. OCR training data is extracted automatically from handwritten and block-printed primary 
source texts. 

 
 

Crowdsourced editing and curation 
 
Once transcriptions of page images have been created, they are directly imported into the public 
database system. As initial transcriptions are created using OCR, they inevitably contain mistakes. 
Users of the system have the option to correct mistakes they identify, as well as to annotate texts 
in a number of ways. Two distinct editing interfaces are provided: a direct editor, which enables 
direct editing of the underlying XML representation, and a visual editor, which allowing simplified 
editing of page-level transcriptions, and which edits the same underlying content but does not 
require direct understanding or modification of XML. Regardless of the mechanism used to submit 
an edit, all edits are committed immediately to the live, public system. Edits are versioned, allowing 
visualization of changes between versions and simple reversion of a text to its state at any earlier 
point in time (Fig. 5). At present, the system receives on the order of 100 edits each day, generally 



representing much larger numbers of corrections, as editors frequently choose to correct multiple 
errors in a single operation. 

 

 
 

Figure 5. Visualization of versioning of a single crowdsourced edit. Arrows indicate interface 
workflow by following links from the edit log (top) to an automated comparison of the state 
immediately before and after the edit (middle) and then to the page and column corresponding to 
the edited text in image-and-transcription view (bottom). 

 
 
Further visual editing tools supplement these mechanisms to enable crowdsourcing of more 

complex information. Illustrations are entered by the user drawing a rectangular box on the page 
image to indicate the location of the illustration, then filling in a simple form describing various 
aspects of it (Fig. 6). This results in an XML fragment describing the illustration, which can simply be 
inserted into the text at the appropriate location to represent it. This allows the illustration to be 
extracted from its context on the page and represented in the full-text transcription view as well as 
in the page-wise view. It also facilitates illustration search functionality, in which illustrations can 
be searched by caption across all materials contained in the system (Fig. 7). Caption indexing also 
allows comparison of illustrations aggregated according to caption where similar groups of 
captioned illustrations occur in multiple works, or in multiple editions of the same work; this can be 
used to quickly identify stylistic similarities and differences among works with overlapping groups 
of illustrations (Fig. 8). Future extensions to this functionality will also implement illustration search 
using image similarity comparison and ranking, allowing a user to search for illustrations similar to 
an arbitrary image file – greatly simplifying the task of identifying the source of an historical 
illustration of unknown provenance, as well as making it possible to identify visually similar 
illustrations occurring anywhere in the corpus. 

A similar visual editing interface is used to enable the inputting of rare and variant 
characters which do not exist in Unicode. These characters are no longer in common use, but occur 
in many historical documents; additionally, as historical dictionaries fall within the scope of the 
project, character glyphs occur – and must be transcribed to give an adequate digital edition of the 
text – which may not be candidates for addition to Unicode at all (a common example being a 
dictionary entry which cites an otherwise unattested character form only to gloss it as in fact being 



a mistake for another character). The visual editing interface for rare character input also uses 
metadata provided by the user to identify whether a given character is the same as any existing 
character known to the system, and if so, assigns a common identifier so that data about these 
characters can be aggregated, and text containing such characters searched. 

 

 
Figure 6. Identification and markup of illustrations within source materials are crowdsourced using 
purpose-designed visual editing tools which convert user input into XML. 

 

 
Figure 7. Illustration search: individual illustrations are extracted from (and linked to) the precise 
location at which they occur in source materials, and can be searched by caption. 



 

 
Figure 8. Tabular comparison of illustrations across multiple works: each column of images 
represents one individual work; each row represents a caption appearing in one or more of these 
works. This example highlights the clear stylistic similarities in the third row between the first and 
second work, which appear to have been copied either from one another or from a common source. 

 
Application Programming Interface and Integration with External Systems 

 
The platform and public web interface were originally released in 2005. Since then, alongside 
ongoing technical improvements to the platform itself, the volume of data accessible through the 
platform has grown by many orders of magnitude, from a few thousand characters of material in 
the earliest 2005 release, to over 5 billion characters in 2018. This rapid growth in content presents 
many opportunities for use cases not envisaged in the original design, particularly for text mining 



use and statistical analysis of a sizeable and growing subset of all transmitted Chinese works. While 
some functionality supporting these uses has been built into the system itself – for example, 
dictionary pages programmatically extracting citations from historical dictionaries and aligned 
translations of example uses of terms from aligned translations of complete texts, and a searchable 
database of pre-computed text reuse relationships in the classical corpus (Sturgeon 2018a) – more 
open-ended access to textual data and metadata is also needed to facilitate other studies. Typical 
text mining tasks are expected to focus on subsets of the entire corpus, in part because the corpus 
itself intentionally incorporates duplication in the form of transcriptions of multiple historical 
editions of the same abstract work. Text mining tasks are expected to involve anything from some 
part of a single work, to many hundreds or even thousands of works. 

In order to enable efficient access, a web API was created to deliver text and metadata for 
arbitrary subsets of the corpus in a machine-readable format. The goal of this was to facilitate two 
types of use: offline use, where data is downloaded programmatically for text mining purposes, and 
online use, in which independently developed web applications request and process data from the 
API in various ways – allowing for integration with other projects and the creation of “mashups” 
combining content from the Chinese Text Project with code and data from other sources. The API 
itself consists of a series of HTTP endpoints returning data in JSON format.6 In order to facilitate use 
of the API in practice, two additional components are added: firstly, Uniform Resource Names 
(URNs), which are short identifiers uniquely identifying a textual object contained in the database, 
and secondly an XML-based plugin system, which provides a mechanism for users to extend the 
web interface itself. URNs representing textual objects are exposed directly from within the user 
interface, and can be passed to the API to request textual content and metadata relating to those 
objects (for example by being copied into a program or website capable of making API requests). 
Plugins provide a mechanism for users to have the web interface pass the URN associated with any 
textual object being viewed by the user within the web interface to an external web application via 
URL, enabling more intuitive connection between the web interface and other online tools capable 
of accessing content via the API. 

Several additional design goals as well as properties of the materials themselves influenced 
the design of the JSON API. Firstly, the range of lengths of texts: some texts included in the corpus 
are very short – the Daodejing, for example, consists of only around 5000 characters – while others, 
such as the Kangxi Zidian dictionary at over 2 million characters long, are several orders of 
magnitude longer. At the same time, API responses cannot easily be precomputed, as the 
crowdsourcing system implies that textual content may change at any time. Lastly, the additional 
requirement of scalability – the ability for the system to handle large numbers of simultaneous 
requests from multiple concurrent users of the system – makes the prospect of assembling 
arbitrarily large textual objects in real time in response to API requests unpalatable, particularly 
given the possibility of maliciously constructed requests. Due to the popularity and high visibility of 
the public-facing system, this concern is not merely theoretical: to date, the web interface has, at 
various times, been the target of Distributed Denial of Service (DDoS) attacks involving hundreds of 
thousands of geographically distributed systems conducting simultaneous coordinated attacks. The 
API, like the web interface, must be as resilient as practical to such attacks, and a minimal 
requirement to achieving this is the avoidance of amplification effects, in which a small number of 
carefully chosen queries can cause disproportionately large amounts of work for the server 
responding to them. 



In view of these requirements, API responses are designed first and foremost to be easily 
deliverable at scale. This is achieved by having API requests closely follow the internal 
representation of textual materials, in which all texts, large or small, are composed of smaller, 
more manageable units arranged in sequence. API requests for textual objects are therefore in 
general recursive: a request for a textual object will either directly return textual content, or 
instead return a list of URNs of other objects which a client must request and assemble in order to 
yield the complete text – no single API request will attempt to directly return a complete text 
composed of millions of characters. This 1:1 relationship with the underlying representation means 
that in general the work required to be performed by the API server scales linearly with the number 
of requests, avoiding amplification effects, and the number of possible distinct valid requests for 
textual data is limited by the total number of units in the underlying representation. This contrasts 
with more sophisticated text delivery APIs such as Canonical Text Services (Smith 2009, Tiepmar et. 
al. 2014), in which arbitrary spans of material up to and including complete texts can be requested 
in a single operation. 

One consequence of this approach is an increase in API client complexity, as API clients 
must be capable of making follow-up requests as necessary according to API responses, and 
assembling full-text data accordingly. However, this additional complexity is easily mitigated on the 
client side, because the recursive request structure follows simple and predictable rules. Libraries 
for client languages and environments can use these rules to provide access to full-text materials 
with a choice of formats – current examples include open source libraries for Python and JavaScript 
which handle full-text recursive requests and provide simple wrappers for other API functions.7 
 
Text Mining 
 
A key anticipated application of the API is text mining of historical Chinese materials. The large size 
of the collection, together with the consistency of format guaranteed by the platform, API, and 
client libraries, make this body of material particularly attractive for such use. One challenge – and 
opportunity – in this field is that projects may be undertaken by researchers in many subject 
domains with widely varying technical backgrounds: while many computer scientists, Natural 
Language Processing (NLP) specialists, and corpus linguists will have the requisite skills to make use 
of the content and API functionality directly, there nevertheless remains an even larger potential 
audience of humanities scholars working with pre-modern Chinese materials, who may not have a 
technical background in programming, NLP, or text mining, but who have enormous potential to 
engage with digital techniques for exploring textual materials and apply them in focused ways in 
the context of their own research. This includes “DH curious” and casual audiences, but also 
students and scholars primarily based in traditional humanities departments who see the potential 
value of digital approaches to the study of textual materials. 

In an attempt to engage this large potential audience of focused text miners and future 
digital scholars, text mining functionality has been added to the system (Sturgeon 2018b and 2019) 
in a way that does not require technical knowledge such as ability to use a programming language, 
by means of a separate system called Text Tools. 8  This functionality has been intentionally 
implemented exclusively using the API described above in order to ensure full separation between 
text mining code, and services implementing access to the data upon which text mining routines 
act. Instead of integrating text mining functionality into the core platform, Text Tools functions as 
an independent browser-based tool providing a user interface for basic text mining services, and 



this tool is linked to the web interface using the plugin system and API in the same way as any 
other API application. 

Text mining tools currently available in the tool range from the very simple, such as 
calculating term and n-gram frequencies, or performing regular expression search and replace – to 
significantly more sophisticated analyses such as identification and visualization of text reuse, and 
Principal Component Analysis (PCA) on user-specified vector data. Wherever possible, extensive 
use is made of interactivity, enabling exploration of the data and emphasizing the connection 
between numerical results and features of the texts which correspond to them. Many of the 
visualizations also make use of textual structures such as chapter divisions exposed consistently by 
the API to achieve intuitive ways of navigating the data. For example, text reuse can be visualized 
firstly as a heat-map layered upon the full-text content itself, but also as a heat-map matrix in 
which rows and columns correspond to chapters of text and cells represent reuse between 
chapters, or as a network graph in which nodes represent chapters and edges reuse relationships. 
In the latter two summary views, the cells and edges both link to the subset of the full-text heat-
map visualization that corresponds to the two relevant chapters of text. PCA and cosine similarity 
comparisons also operate upon chapters as units of analysis, and present interactive visualizations 
in which numerical results are used to rank terms in decreasing order of their contribution to a 
transformed coordinate or cosine similarity score for a given result; these term lists themselves 
linking through to charts visualizing the relative frequency of that term throughout the corpus 
being analyzed. 

In addition to interactivity, important benefits of the web-based interface and client-side 
processing approach adopted in this tool are ease and immediacy of use – nothing needs to be 
installed locally beyond a modern web browser – and scalability of service delivery. Additionally, 
the tool has been designed to be largely language agnostic and makes few assumptions about 
textual materials specific to the Chinese language. However, in order to perform useful text mining 
work with materials in other languages, some language-dependent processing will typically be 
required. For example, adequate tokenization rules for English differ from those for Russian, while 
tokenization for languages such as modern Chinese, written without spaces or other delimiters 
between words, require entirely different approaches to tokenization involving machine learning 
and models which might be prohibitively large to efficiently run in a web browser. Stemming, case 
normalization, and other types of pre-processing will be important for some languages, irrelevant 
for others, and in general differ in their details among those languages to which they apply. Many 
open source software packages and toolkits exist to perform these tasks for specific languages – 
however no single package combines all of these into one common system, and many different 
programming languages and dependencies are required by the various packages. 

Instead of attempting to integrate code to handle language-specific pre-processing into the 
tool, an alternative distributed approach is used to address the problem. No language-specific 
routines are added to the tool itself, but a Text Transformation API is instead defined to allow 
transformations to be performed outside the tool.9 This JSON-based web API is intended to be as 
simple and light-weight as practical, so that wrappers around existing tools can be easily created. 
An API server consists of a single endpoint offering two services: discovery – advertising what 
services are available, what languages they apply to, and how to access them; and transformation – 
taking input text and returning a modified text transformed according to the requested method. 
Thus the tool itself does not have any knowledge of any specific tokenization methods or other 
transformation services, but instead discovers at runtime which transformations are available, 



either using the default API endpoint (https://txt.ctext.org/services.pl), or alternatively an endpoint 
input by the user.10 This greatly simplifies the provision of a range of services based on different 
technical platforms, allows for daemon-like long-running services which can process requests 
quickly but take much longer to start up, and also makes it possible for a user to run services on the 
local system or elsewhere on a local network (as might be useful in a workshop or classroom 
setting) without modifying the user interface or workflow. 
 
Conclusions and Future Work 
 
This paper has demonstrated the feasibility of a dynamic approach to digital library design in which 
materials are simultaneously used and improved over time by their users. This approach has the 
advantage of giving access to a long tail of obscure material which might otherwise be at risk of 
lying neglected by full-text digital systems, awaiting its transcription and full correction through 
more traditional approaches. 

The general framework introduced in this paper and implemented in the current online 
system has considerable room for further extension. Where possible, many future functions may 
be best implemented as independent, loosely connected systems, accessing textual materials as 
necessary via API, rather than being closely integrated into the library itself. Alongside Text Tools, 
the MARKUS textual markup platform is a good example of this, being developed entirely 
independently by a team using different technologies, and yet working seamlessly with textual data 
from the Chinese Text Project from a user perspective via API integration. Using the API, URNs, and 
a custom plugin, users can navigate textual materials within the Chinese Text Project web interface, 
then import these directly into MARKUS with a single click, and immediately have access to the 
specialized functionality of that platform. MARKUS users can also search and import textual 
materials from directly within the MARKUS platform using a dedicated search interface. 

Future additions to the Chinese Text Project itself will likely focus on core functionality and 
content which benefits from maintaining close ties to the source materials themselves. This will 
include in particular more detailed semantic markup of the texts – easily implemented technically 
within the current framework using XML – to allow precise annotations of references to named 
individuals, places, and dates, together with enhancements to the crowdsourcing interface to 
facilitate this. Further enhancements to indexing of content, making use of this and other available 
data, will also be valuable improvements to the core platform. 

 
 

Bibliography 
 

De Weerdt, H., Chu, M. K. and Ho, H. (2016). Chinese Empires in Comparative Perspective: A Digital 
Approach. Verge: Studies in Global Asias, 2(2), pp. 58-69. 
Holley, R. (2009). A success story – Australian Newspapers Digitisation Program. Online Currents, 
23(6), pp. 283-295. 
Neudecker, C. and Tzadok, A. (2010). User Collaboration for Improving Access to Historical Texts. 
Liber Quarterly 20 (1). 
Newby, G. B.  and Franks, C. Distributed Proofreading. (2003). Proc. Joint Conference on Digital 
Libraries 2003. 
Smith, N. (2009). Citation in classical studies. Digital Humanities Quarterly, 3(1). 



Sturgeon, D. (2017). Unsupervised Extraction of Training Data for Pre-Modern Chinese OCR. Proc. 
FLAIRS-30. 
Sturgeon, D. (2018a). Unsupervised Identification of Text Reuse in Early Chinese Literature, Digital 
Scholarship in the Humanities 33(3), pp. 670-684. 
Sturgeon, D. (2018b).  Digital Approaches to Text Reuse in the Early Chinese Corpus, Journal of 
Chinese Literature and Culture 5(2). 
Sturgeon, D. (2018c).  Large-scale Optical Character Recognition of Pre-modern Chinese Texts, 
International Journal of Buddhist Thought and Culture 28(2). 
Sturgeon, D. (2019 forthcoming). Accessible Text Mining with Text Tools and the Chinese Text 
Project, Harvard Data Science Review. 
Tiepmar, K., Teichmann, C., Heyer, G., Berti, M. and Crane, G. (2014). A New Implementation for 
Canonical Text Services. Proceedings of the 8th Workshop on Language Technology for Cultural 
Heritage, Social Sciences, and Humanities (LaTeCH), pp. 1–8. 

 
 

                                                        
1 Source: Google Analytics. 
2 Wikisource, by contrast, does not impose this restriction, and the majority of its transcriptions to 
not have corresponding page images. 
3 Summary of Formatting Guidelines. https://www.pgdp.net/c/faq/formatting_summary.pdf 
4 These pages can be accessed in the online system here: 
https://ctext.org/library.pl?if=en&file=147636&page=13 
https://ctext.org/wiki.pl?if=en&chapter=146021 
5 Similar comments apply to more recent techniques which require labeled text lines rather than 
labeled characters. 
6 https://ctext.org/tools/api 
7 https://pypi.python.org/pypi/ctext 
8 http://ctext.org/plugins/texttools/#help 
9 https://dsturgeon.net/tta/ 
10 This default endpoint currently offers modern Chinese tokenization using Stanford CoreNLP, 
English tokenization using the Moses Statistical Machine Translation toolkit, Japanese tokenization 
using either MeCab or Kuromoji, part of speech tagging for English and modern Chinese using 
CoreNLP, as well as a handful of other textual transformations. 


