
Chinese Text Project: A Dynamic Digital Library of Pre-modern Chinese*
Donald Sturgeon†

Abstract

This paper presents technical approaches and innovations in digital library design developed during
the design and implementation of the Chinese Text Project, a widely-used, large scale full-text
digital library of pre-modern Chinese writing. By leveraging a combination of domain-optimized
Optical Character Recognition (OCR), a purpose-designed crowdsourcing system, and an
Application Programming Interface (API), this project simultaneously provides a sustainable
transcription system, search interface and reading environment, as well as an extensible platform
for transcribing and working with pre-modern Chinese textual materials. By means of the API,
intentionally loosely integrated text mining tools are used to extend the platform, while also being
reusable independently with materials from other sources and in other languages.

Introduction

Traditional full-text digital libraries, including those in the field of pre-modern Chinese, have
typically followed top-down, centralized, and static models of content creation and curation. In this
type of model, written materials are scanned, transcribed by manual effort and/or Optical
Character Recognition (OCR), then corrected manually, reviewed, annotated, and finally imported
into a system in their final, usable form. This is a natural and well-grounded strategy for design and
implementation of such systems, with strong roots in traditional academic publishing models, and
offering greatly reduced technical complexity over alternative approaches. This strategy, however,
is unable to adequately meet the challenges of increasingly large-scale digitization and the resulting
rapid growth in potential corpus size as ever larger volumes of historical materials are digitized by
libraries around the world.

The Chinese Text Project (https://ctext.org) is a full-text digital library of pre-modern
Chinese written materials which implements an alternative model for creation and curation of full-
text materials, adapting methodologies from crowdsourcing projects such as Wikipedia and
Distributed Proofreaders (Newby and Franks 2003) while also integrating them with full-text
database functionality. In contrast to the traditional linear approach, in which all stages of
processing including correction and review must be completed before transcribed material is
ingested into a database system, this approach works by immediately ingesting unreviewed
materials into a publicly available, managed system, within which these materials can be navigated
and used, as well as improved through an ongoing collaborative correction and annotation process.
From a user perspective, this has the consequence that the utility of the system does not rest upon
prior expert review of materials, but instead derives from provision to individual users of the ability
to interact directly and effectively with primary source materials and verify accuracy of
transcription and annotation for themselves. Combined with specialized Optical Character
Recognition techniques leveraging features common to pre-modern Chinese written works

* This paper has been accepted for publication in Digital Scholarship in the Humanities, version of
record: https://doi.org/10.1093/llc/fqz046
† Department of Computer Science, Durham University.

(Sturgeon 2017a), this has enabled the creation of a system providing access to a long tail of
historical works which would otherwise not be available in transcribed form. The system is highly
scalable and currently contains over 25 million pages of primary source material and over 5 billion
characters of transcribed text, while being used by over 30,000 users around the world every day.1

As the scale of the project has grown considerably since originally envisioned, many
opportunities for text mining and other digital studies using material contained within the platform
have emerged. To facilitate these uses, an Application Programming Interface (API) has been
implemented, which is currently used for text mining purposes in research and teaching at a
number of universities worldwide, as well as for facilitating data exchange with independently
developed online tools, such as the MARKUS textual markup platform for historical Chinese texts
developed at Leiden University (De Weerdt et al. 2016) and the Text Tools textual analysis platform
(Sturgeon 2019, forthcoming).

Basic functionality and representations of data

Systems such as MediaWiki have been used successfully to enable crowdsourced collaboration of
the transcription of historical textual works – a notable example being the Wikisource project
(https://wikisource.org), which allows anonymous and pseudonymous users to contribute to the
transcription of texts in a large range of languages. While the quality of transcriptions in Wikisource
varies greatly, open collaborative transcription systems have been shown to be capable of
producing accurate transcriptions (Neudecker and Tzadok 2010). Transcriptions of texts created as
part of Wikisource have been widely used in text mining and Natural Language Processing (NLP)
applications, as have those produced through other crowdsourced transcription platforms such as
Distributed Proofreaders.

One key difference between the system described in this paper and many crowdsourcing
transcription projects is that in the Chinese Text Project, collaborative editing is in general expected
to be an ongoing, continual process, rather than one which should be completed prior to use of
fully corrected transcriptions. The extremely large volume of primary source material available –
the project currently provides access to over 25 million pages of scanned material – means that
even with a large and committed crowdsourcing community, many more obscure materials cannot
be expected to be manually corrected for some time. As a result, the use of these materials is not
expected to be something which can take place only after correction has been completed; instead,
use may occur at any time starting from the initial creation of a transcription by OCR. Full-text
search of scanned image sequences, full-text indexing of the entire body of material, extraction of
full-text data in a readable form, and API access to content are all expected to take place at any
point in the process of correction, from first ingestion of unreviewed data through to completed
correction. This dynamic model contrasts with both the traditional static model of content curation
for full-text digital libraries, as well as with models such as those of Distributed Proofreaders and
other systems implicitly relying upon a two-step process of complete correction in a system
designed solely for transcription, followed by use of fully corrected materials in separate systems
not implementing crowdsourced correction (Fig. 1).

This design requirement has important consequences for the data structures used to
represent textual materials during the crowdsourcing process. For example, one serious difficulty
faced in using data contained in MediaWiki-type systems such as Wikisource for text mining
purposes is the high degree of freedom of structure allowed by the page-based or “article” model.

Software like MediaWiki allows the editing of individual pages or “articles” (directly analogous to
encyclopedia articles in Wikipedia, which is built using the same software platform), which for
practical reasons should not be arbitrarily long. In Wikisource, a single long text is frequently
represented by using a separate page for each chapter of the text, together with another page
containing links to each chapter in sequence. However, neither the MediaWiki platform nor the
Wikisource implementation enforce this particular choice of structure, and many other structures
are both possible and observed in practice – for example, multiple levels of contents pages, as well
as composite texts which are themselves composed of other texts. More seriously, as the platform
does not enforce rules on which pages may link to which others, the link structure that would need
to be navigated to serialize a complete text, starting from its contents page, is modeled as an
arbitrary directed graph – allowing cases such as cycles as well as disconnected or “orphan” pages.
Other complicating factors include the presence of multiple links intended for human readers (such
as navigation bars), which would need to be specifically excluded by an indexing system attempting
to construct the entire text as a single object by identifying and assembling all of its various pieces
in the correct order.

Page-based models of representation in which pages correspond to physical pages in a
source manuscript easily sidestep this issue, because pages occur in sequence and so it should be
possible to assemble their contents in the correct order with little difficulty; this type of approach is
common in dedicated transcription systems in which a scanned source existing in the system is a
prerequisite to any transcription being created. 2 In this approach, division into logical
organizational units such as chapters is no longer a core feature of the representation; though in
principle this could be added using markup conventions, the currently used markup in projects such
as Distributed Proofreaders does not provide markup to indicate this, instead asking proofreaders
to use markup describing the formatting of a chapter heading.3

The representation chosen for the Chinese Text Project attempts to combine aspects of
both approaches in such a way as to record information about physical page locations as well as
logical hierarchies in the text such as chapter divisions, while also constraining the maximum size of
internally represented textual units and minimizing the required complexity of processing for
display of textual content, indexing, and assembling of complete texts. The representation is based
on two layers: firstly, a complete text is represented as a single sequence of one or more serialized
textual items of sizes limited to those which can be practically edited in a web browser window.
These items are internally referred to as “chapters” (though they need not always correspond to
chapters in the text), and correspond directly to the top-level divisions presented to a user when
navigating the text. Secondly, each “chapter” consists of a serialized fragment containing the full-
text content of that item, together with additional information that 1) links every line of text to a
position on the particular page image from which the transcription derives, and 2) encodes logical
subdivisions within the “chapter”, including paragraph divisions. Fragments contain XML markup
together with a small number of additional markup conventions, most notably the convention that
a blank line is interpreted as a paragraph division. This convention was chosen because it has the
effect that a text not containing any markup (thus representing a transcription which has no links
to a scanned primary source) is both a valid serialization and also has an easily readable internal
representation. This representation allows the system to perform versioning at the level of the
“chapter”, which is of a controlled length; it ensures that when displaying a text one chapter at a
time, only one underlying unit of serialized data needs to be processed; and it provides a simple
way of constructing the complete text, by assembling the list of units in the specified order.

The key function of the chosen representation is to facilitate and connect two distinct
methods of interacting with the transcribed material: firstly, as a single document consisting of the
transcribed contents of each page concatenated in sequence to give readable plain-text with logical
structure (divisions into chapters, sections, and paragraphs); secondly, as a sequence of page-wise
transcriptions, in which a direct visual comparison can be made between the transcription and the
image from which it is derived (Fig. 2). In both cases, an important contribution of the transcription
is that it enables full-text search; the primary utility of the page-wise view is that it enables efficient
comparison of transcribed material with the facsimile of the primary source itself (Fig. 3). As these
two views are linked to one another and created from the same underlying data, this makes it
feasible to read and navigate a text according to its logical structure, and at any stage of the
process jump to the exact corresponding location in the sequence of page images to confirm
accuracy of any part of the transcription.

Figure 1. Static and dynamic models of full-text database content curation. Dotted regions

indicate parts of the process occurring prior to ingestion into the final platform, during which results
are inaccessible to users.

Transcribe

Correct

Punctuate

Annotate

Ingest

Transcribe

Ingest

Correct

Punctuate

Annotate

Use

Use

Static Dynamic

Figure 2. Image-and-transcription view of the first page of a chapter of text (left), and the

corresponding logical transcription view (right).4

Figure 3. Full-text search results can be displayed in context in a logical transcription view (left), as
well as aligned directly together with the source image in an image and transcription view (right).

Creating transcriptions

The most fundamental types of material contained in the Chinese Text Project are digital facsimiles
of pre-modern published works, and transcriptions of the textual content of these works. Although
individual users can also upload both of these types of data individually, image data is more
typically ingested in bulk through collaboration with university libraries and scanning centers,
currently including the libraries of Harvard Yenching, Princeton University, and the Chinese
University of Hong Kong, which have created high quality digital images of works in their collections.
After ingestion, the next step in making these materials more useful to users is creation of
approximate transcriptions from page images using OCR. Producing accurate OCR results for

historical materials is challenging due to a number of issues, including variation in handwriting and
printing styles, varying degrees of contrast between text and paper, bleed-through from reverse
sheets, complex and unusual layouts, and physical, water or insect damage to the materials
themselves prior to digitization. In addition to these challenges, which are common to OCR of
historical documents generally, OCR for premodern Chinese works faces additional difficulties in
extracting training data due to the large number of distinct character types in the Chinese language.
Most OCR techniques apply machine learning to infer from an image of a character which character
type it is that the image represents, and these techniques require comprehensive training data in
the form of clear and correctly labeled images in the same writing style for every possible
character.5 This is challenging for Chinese due to the large number of character types needed for
useful OCR (on the order of 5000); unlike historical OCR of writing systems with much smaller
character sets, it is not feasible to simply create this data manually. Instead, training data is
extracted through an automated procedure (Sturgeon 2017a) which leverages knowledge about
existing transcriptions of other texts to assemble clean, labeled character images extracted from
historical works for every character to be recognized (Fig. 4). Together with image processing and
language modeling tailored to pre-modern Chinese, this significantly reduces the error rate in
comparison with off-the-shelf OCR software (Sturgeon 2018c).

Figure 4. OCR training data is extracted automatically from handwritten and block-printed primary
source texts.

Crowdsourced editing and curation

Once transcriptions of page images have been created, they are directly imported into the public
database system. As initial transcriptions are created using OCR, they inevitably contain mistakes.
Users of the system have the option to correct mistakes they identify, as well as to annotate texts
in a number of ways. Two distinct editing interfaces are provided: a direct editor, which enables
direct editing of the underlying XML representation, and a visual editor, which allowing simplified
editing of page-level transcriptions, and which edits the same underlying content but does not
require direct understanding or modification of XML. Regardless of the mechanism used to submit
an edit, all edits are committed immediately to the live, public system. Edits are versioned, allowing
visualization of changes between versions and simple reversion of a text to its state at any earlier
point in time (Fig. 5). At present, the system receives on the order of 100 edits each day, generally

representing much larger numbers of corrections, as editors frequently choose to correct multiple
errors in a single operation.

Figure 5. Visualization of versioning of a single crowdsourced edit. Arrows indicate interface
workflow by following links from the edit log (top) to an automated comparison of the state
immediately before and after the edit (middle) and then to the page and column corresponding to
the edited text in image-and-transcription view (bottom).

Further visual editing tools supplement these mechanisms to enable crowdsourcing of more

complex information. Illustrations are entered by the user drawing a rectangular box on the page
image to indicate the location of the illustration, then filling in a simple form describing various
aspects of it (Fig. 6). This results in an XML fragment describing the illustration, which can simply be
inserted into the text at the appropriate location to represent it. This allows the illustration to be
extracted from its context on the page and represented in the full-text transcription view as well as
in the page-wise view. It also facilitates illustration search functionality, in which illustrations can
be searched by caption across all materials contained in the system (Fig. 7). Caption indexing also
allows comparison of illustrations aggregated according to caption where similar groups of
captioned illustrations occur in multiple works, or in multiple editions of the same work; this can be
used to quickly identify stylistic similarities and differences among works with overlapping groups
of illustrations (Fig. 8). Future extensions to this functionality will also implement illustration search
using image similarity comparison and ranking, allowing a user to search for illustrations similar to
an arbitrary image file – greatly simplifying the task of identifying the source of an historical
illustration of unknown provenance, as well as making it possible to identify visually similar
illustrations occurring anywhere in the corpus.

A similar visual editing interface is used to enable the inputting of rare and variant
characters which do not exist in Unicode. These characters are no longer in common use, but occur
in many historical documents; additionally, as historical dictionaries fall within the scope of the
project, character glyphs occur – and must be transcribed to give an adequate digital edition of the
text – which may not be candidates for addition to Unicode at all (a common example being a
dictionary entry which cites an otherwise unattested character form only to gloss it as in fact being

a mistake for another character). The visual editing interface for rare character input also uses
metadata provided by the user to identify whether a given character is the same as any existing
character known to the system, and if so, assigns a common identifier so that data about these
characters can be aggregated, and text containing such characters searched.

Figure 6. Identification and markup of illustrations within source materials are crowdsourced using
purpose-designed visual editing tools which convert user input into XML.

Figure 7. Illustration search: individual illustrations are extracted from (and linked to) the precise
location at which they occur in source materials, and can be searched by caption.

Figure 8. Tabular comparison of illustrations across multiple works: each column of images
represents one individual work; each row represents a caption appearing in one or more of these
works. This example highlights the clear stylistic similarities in the third row between the first and
second work, which appear to have been copied either from one another or from a common source.

Application Programming Interface and Integration with External Systems

The platform and public web interface were originally released in 2005. Since then, alongside
ongoing technical improvements to the platform itself, the volume of data accessible through the
platform has grown by many orders of magnitude, from a few thousand characters of material in
the earliest 2005 release, to over 5 billion characters in 2018. This rapid growth in content presents
many opportunities for use cases not envisaged in the original design, particularly for text mining

use and statistical analysis of a sizeable and growing subset of all transmitted Chinese works. While
some functionality supporting these uses has been built into the system itself – for example,
dictionary pages programmatically extracting citations from historical dictionaries and aligned
translations of example uses of terms from aligned translations of complete texts, and a searchable
database of pre-computed text reuse relationships in the classical corpus (Sturgeon 2018a) – more
open-ended access to textual data and metadata is also needed to facilitate other studies. Typical
text mining tasks are expected to focus on subsets of the entire corpus, in part because the corpus
itself intentionally incorporates duplication in the form of transcriptions of multiple historical
editions of the same abstract work. Text mining tasks are expected to involve anything from some
part of a single work, to many hundreds or even thousands of works.

In order to enable efficient access, a web API was created to deliver text and metadata for
arbitrary subsets of the corpus in a machine-readable format. The goal of this was to facilitate two
types of use: offline use, where data is downloaded programmatically for text mining purposes, and
online use, in which independently developed web applications request and process data from the
API in various ways – allowing for integration with other projects and the creation of “mashups”
combining content from the Chinese Text Project with code and data from other sources. The API
itself consists of a series of HTTP endpoints returning data in JSON format.6 In order to facilitate use
of the API in practice, two additional components are added: firstly, Uniform Resource Names
(URNs), which are short identifiers uniquely identifying a textual object contained in the database,
and secondly an XML-based plugin system, which provides a mechanism for users to extend the
web interface itself. URNs representing textual objects are exposed directly from within the user
interface, and can be passed to the API to request textual content and metadata relating to those
objects (for example by being copied into a program or website capable of making API requests).
Plugins provide a mechanism for users to have the web interface pass the URN associated with any
textual object being viewed by the user within the web interface to an external web application via
URL, enabling more intuitive connection between the web interface and other online tools capable
of accessing content via the API.

Several additional design goals as well as properties of the materials themselves influenced
the design of the JSON API. Firstly, the range of lengths of texts: some texts included in the corpus
are very short – the Daodejing, for example, consists of only around 5000 characters – while others,
such as the Kangxi Zidian dictionary at over 2 million characters long, are several orders of
magnitude longer. At the same time, API responses cannot easily be precomputed, as the
crowdsourcing system implies that textual content may change at any time. Lastly, the additional
requirement of scalability – the ability for the system to handle large numbers of simultaneous
requests from multiple concurrent users of the system – makes the prospect of assembling
arbitrarily large textual objects in real time in response to API requests unpalatable, particularly
given the possibility of maliciously constructed requests. Due to the popularity and high visibility of
the public-facing system, this concern is not merely theoretical: to date, the web interface has, at
various times, been the target of Distributed Denial of Service (DDoS) attacks involving hundreds of
thousands of geographically distributed systems conducting simultaneous coordinated attacks. The
API, like the web interface, must be as resilient as practical to such attacks, and a minimal
requirement to achieving this is the avoidance of amplification effects, in which a small number of
carefully chosen queries can cause disproportionately large amounts of work for the server
responding to them.

In view of these requirements, API responses are designed first and foremost to be easily
deliverable at scale. This is achieved by having API requests closely follow the internal
representation of textual materials, in which all texts, large or small, are composed of smaller,
more manageable units arranged in sequence. API requests for textual objects are therefore in
general recursive: a request for a textual object will either directly return textual content, or
instead return a list of URNs of other objects which a client must request and assemble in order to
yield the complete text – no single API request will attempt to directly return a complete text
composed of millions of characters. This 1:1 relationship with the underlying representation means
that in general the work required to be performed by the API server scales linearly with the number
of requests, avoiding amplification effects, and the number of possible distinct valid requests for
textual data is limited by the total number of units in the underlying representation. This contrasts
with more sophisticated text delivery APIs such as Canonical Text Services (Smith 2009, Tiepmar et.
al. 2014), in which arbitrary spans of material up to and including complete texts can be requested
in a single operation.

One consequence of this approach is an increase in API client complexity, as API clients
must be capable of making follow-up requests as necessary according to API responses, and
assembling full-text data accordingly. However, this additional complexity is easily mitigated on the
client side, because the recursive request structure follows simple and predictable rules. Libraries
for client languages and environments can use these rules to provide access to full-text materials
with a choice of formats – current examples include open source libraries for Python and JavaScript
which handle full-text recursive requests and provide simple wrappers for other API functions.7

Text Mining

A key anticipated application of the API is text mining of historical Chinese materials. The large size
of the collection, together with the consistency of format guaranteed by the platform, API, and
client libraries, make this body of material particularly attractive for such use. One challenge – and
opportunity – in this field is that projects may be undertaken by researchers in many subject
domains with widely varying technical backgrounds: while many computer scientists, Natural
Language Processing (NLP) specialists, and corpus linguists will have the requisite skills to make use
of the content and API functionality directly, there nevertheless remains an even larger potential
audience of humanities scholars working with pre-modern Chinese materials, who may not have a
technical background in programming, NLP, or text mining, but who have enormous potential to
engage with digital techniques for exploring textual materials and apply them in focused ways in
the context of their own research. This includes “DH curious” and casual audiences, but also
students and scholars primarily based in traditional humanities departments who see the potential
value of digital approaches to the study of textual materials.

In an attempt to engage this large potential audience of focused text miners and future
digital scholars, text mining functionality has been added to the system (Sturgeon 2018b and 2019)
in a way that does not require technical knowledge such as ability to use a programming language,
by means of a separate system called Text Tools. 8 This functionality has been intentionally
implemented exclusively using the API described above in order to ensure full separation between
text mining code, and services implementing access to the data upon which text mining routines
act. Instead of integrating text mining functionality into the core platform, Text Tools functions as
an independent browser-based tool providing a user interface for basic text mining services, and

this tool is linked to the web interface using the plugin system and API in the same way as any
other API application.

Text mining tools currently available in the tool range from the very simple, such as
calculating term and n-gram frequencies, or performing regular expression search and replace – to
significantly more sophisticated analyses such as identification and visualization of text reuse, and
Principal Component Analysis (PCA) on user-specified vector data. Wherever possible, extensive
use is made of interactivity, enabling exploration of the data and emphasizing the connection
between numerical results and features of the texts which correspond to them. Many of the
visualizations also make use of textual structures such as chapter divisions exposed consistently by
the API to achieve intuitive ways of navigating the data. For example, text reuse can be visualized
firstly as a heat-map layered upon the full-text content itself, but also as a heat-map matrix in
which rows and columns correspond to chapters of text and cells represent reuse between
chapters, or as a network graph in which nodes represent chapters and edges reuse relationships.
In the latter two summary views, the cells and edges both link to the subset of the full-text heat-
map visualization that corresponds to the two relevant chapters of text. PCA and cosine similarity
comparisons also operate upon chapters as units of analysis, and present interactive visualizations
in which numerical results are used to rank terms in decreasing order of their contribution to a
transformed coordinate or cosine similarity score for a given result; these term lists themselves
linking through to charts visualizing the relative frequency of that term throughout the corpus
being analyzed.

In addition to interactivity, important benefits of the web-based interface and client-side
processing approach adopted in this tool are ease and immediacy of use – nothing needs to be
installed locally beyond a modern web browser – and scalability of service delivery. Additionally,
the tool has been designed to be largely language agnostic and makes few assumptions about
textual materials specific to the Chinese language. However, in order to perform useful text mining
work with materials in other languages, some language-dependent processing will typically be
required. For example, adequate tokenization rules for English differ from those for Russian, while
tokenization for languages such as modern Chinese, written without spaces or other delimiters
between words, require entirely different approaches to tokenization involving machine learning
and models which might be prohibitively large to efficiently run in a web browser. Stemming, case
normalization, and other types of pre-processing will be important for some languages, irrelevant
for others, and in general differ in their details among those languages to which they apply. Many
open source software packages and toolkits exist to perform these tasks for specific languages –
however no single package combines all of these into one common system, and many different
programming languages and dependencies are required by the various packages.

Instead of attempting to integrate code to handle language-specific pre-processing into the
tool, an alternative distributed approach is used to address the problem. No language-specific
routines are added to the tool itself, but a Text Transformation API is instead defined to allow
transformations to be performed outside the tool.9 This JSON-based web API is intended to be as
simple and light-weight as practical, so that wrappers around existing tools can be easily created.
An API server consists of a single endpoint offering two services: discovery – advertising what
services are available, what languages they apply to, and how to access them; and transformation –
taking input text and returning a modified text transformed according to the requested method.
Thus the tool itself does not have any knowledge of any specific tokenization methods or other
transformation services, but instead discovers at runtime which transformations are available,

either using the default API endpoint (https://txt.ctext.org/services.pl), or alternatively an endpoint
input by the user.10 This greatly simplifies the provision of a range of services based on different
technical platforms, allows for daemon-like long-running services which can process requests
quickly but take much longer to start up, and also makes it possible for a user to run services on the
local system or elsewhere on a local network (as might be useful in a workshop or classroom
setting) without modifying the user interface or workflow.

Conclusions and Future Work

This paper has demonstrated the feasibility of a dynamic approach to digital library design in which
materials are simultaneously used and improved over time by their users. This approach has the
advantage of giving access to a long tail of obscure material which might otherwise be at risk of
lying neglected by full-text digital systems, awaiting its transcription and full correction through
more traditional approaches.

The general framework introduced in this paper and implemented in the current online
system has considerable room for further extension. Where possible, many future functions may
be best implemented as independent, loosely connected systems, accessing textual materials as
necessary via API, rather than being closely integrated into the library itself. Alongside Text Tools,
the MARKUS textual markup platform is a good example of this, being developed entirely
independently by a team using different technologies, and yet working seamlessly with textual data
from the Chinese Text Project from a user perspective via API integration. Using the API, URNs, and
a custom plugin, users can navigate textual materials within the Chinese Text Project web interface,
then import these directly into MARKUS with a single click, and immediately have access to the
specialized functionality of that platform. MARKUS users can also search and import textual
materials from directly within the MARKUS platform using a dedicated search interface.

Future additions to the Chinese Text Project itself will likely focus on core functionality and
content which benefits from maintaining close ties to the source materials themselves. This will
include in particular more detailed semantic markup of the texts – easily implemented technically
within the current framework using XML – to allow precise annotations of references to named
individuals, places, and dates, together with enhancements to the crowdsourcing interface to
facilitate this. Further enhancements to indexing of content, making use of this and other available
data, will also be valuable improvements to the core platform.

Bibliography

De Weerdt, H., Chu, M. K. and Ho, H. (2016). Chinese Empires in Comparative Perspective: A Digital
Approach. Verge: Studies in Global Asias, 2(2), pp. 58-69.
Holley, R. (2009). A success story – Australian Newspapers Digitisation Program. Online Currents,
23(6), pp. 283-295.
Neudecker, C. and Tzadok, A. (2010). User Collaboration for Improving Access to Historical Texts.
Liber Quarterly 20 (1).
Newby, G. B. and Franks, C. Distributed Proofreading. (2003). Proc. Joint Conference on Digital
Libraries 2003.
Smith, N. (2009). Citation in classical studies. Digital Humanities Quarterly, 3(1).

Sturgeon, D. (2017). Unsupervised Extraction of Training Data for Pre-Modern Chinese OCR. Proc.
FLAIRS-30.
Sturgeon, D. (2018a). Unsupervised Identification of Text Reuse in Early Chinese Literature, Digital
Scholarship in the Humanities 33(3), pp. 670-684.
Sturgeon, D. (2018b). Digital Approaches to Text Reuse in the Early Chinese Corpus, Journal of
Chinese Literature and Culture 5(2).
Sturgeon, D. (2018c). Large-scale Optical Character Recognition of Pre-modern Chinese Texts,
International Journal of Buddhist Thought and Culture 28(2).
Sturgeon, D. (2019 forthcoming). Accessible Text Mining with Text Tools and the Chinese Text
Project, Harvard Data Science Review.
Tiepmar, K., Teichmann, C., Heyer, G., Berti, M. and Crane, G. (2014). A New Implementation for
Canonical Text Services. Proceedings of the 8th Workshop on Language Technology for Cultural
Heritage, Social Sciences, and Humanities (LaTeCH), pp. 1–8.

1 Source: Google Analytics.
2 Wikisource, by contrast, does not impose this restriction, and the majority of its transcriptions to
not have corresponding page images.
3 Summary of Formatting Guidelines. https://www.pgdp.net/c/faq/formatting_summary.pdf
4 These pages can be accessed in the online system here:
https://ctext.org/library.pl?if=en&file=147636&page=13
https://ctext.org/wiki.pl?if=en&chapter=146021
5 Similar comments apply to more recent techniques which require labeled text lines rather than
labeled characters.
6 https://ctext.org/tools/api
7 https://pypi.python.org/pypi/ctext
8 http://ctext.org/plugins/texttools/#help
9 https://dsturgeon.net/tta/
10 This default endpoint currently offers modern Chinese tokenization using Stanford CoreNLP,
English tokenization using the Moses Statistical Machine Translation toolkit, Japanese tokenization
using either MeCab or Kuromoji, part of speech tagging for English and modern Chinese using
CoreNLP, as well as a handful of other textual transformations.

